Exercise 53

For the following exercises, sketch a graph of the quadratic function and give the vertex, axis of symmetry, and intercepts.

$$
f(x)=x^{2}-2 x
$$

Solution

In order to more easily graph the quadratic function, write it in vertex form by completing the square. The following algebraic identity is necessary.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=-2$, which means $B=-1$ and $B^{2}=1$. Add and subtract 1 from the right side and use the identity.

$$
\begin{aligned}
f(x) & =\left(x^{2}-2 x+1\right)-1 \\
& =(x+(-1))^{2}-1 \\
& =(x-1)^{2}-1
\end{aligned}
$$

Therefore, the vertex is $(1,-1)$, and the axis of symmetry is $x=1$. To determine the y-intercept, set $x=0$.

$$
f(0)=(0-1)^{2}-1=(1)-1=0
$$

Therefore, the y-intercept is $(0,0)$. To get the x-intercept, set $y=0$ and solve the equation for x.

$$
\begin{gathered}
0=(x-1)^{2}-1 \\
1=(x-1)^{2}
\end{gathered}
$$

Take the square root of both sides.

$$
\sqrt{1}=\sqrt{(x-1)^{2}}
$$

Since there's an even power under an even root, and the result is to an odd power, an absolute value sign is needed around $x-1$.

$$
|x-1|=1
$$

Remove the absolute value sign by placing \pm on the opposite side.

$$
x-1= \pm 1
$$

Add 1 to both sides.

$$
x=1 \pm 1
$$

This means $x=\{0,2\}$, and the x-intercepts are $(0,0)$ and $(2,0)$.

A graph of the function is shown below.

